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1 Introduction

M-theory [3] has been a powerful guide in the study of non-perturbative aspects of string

theory. However, its microscopic formulation is still lacking. M-theory branes are important

building blocks of M-theory and deeper understanding of them will be crucial for making

progress regarding this issue.

Recently a model for multiple M-theory membranes based on Lie 3-algebra proposed

in ref. [4–6] has been intensively studied. The model has several promising features for a

correct description of multiple M-theory membranes at low energy. On the other hand, its

relations to the space-time covariant formulation of M-theory branes are not fully clarified

yet.1 In ref. [1, 2] a new M5-brane action was constructed from the multiple membrane

action by choosing a Nambu-Poisson algebra as Lie 3-algebra. It was proposed that this

new action may be mapped to more conventional (“ordinary” in the following) description

of M5-brane [11–16] in a constant three-form background,2 in analogy with D-branes in

a constant B-field background which has non-commutative and commutative descriptions

related via Seiberg-Witten map [17].

In this paper we study BPS string solitons in the M5-brane worldvolume with a Nambu-

Poisson structure. These configurations describe an M2-brane ending on an M5-brane.

Such BPS string solitons were first constructed in ref. [18] in the conventional description

of M5-brane, and they were generalized to the case with a constant three-form background

in ref. [19, 20]. From M2-brane worldvolume action, this type of configurations with a

constant three-form field background has been studied in ref. [21, 22]. More recently, it

1See [7–10] for investigations on this issue.
2Note that space-time covariance is broken only by fixing the three-form background in this case.
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was studied from the multiple membrane action in ref. [23] through the deformed Basu-

Harvey equation [24], and their work may be complementary to present work. We solve

the BPS equations in the first order in the parameter g which characterizes the strength

of the Nambu-Poisson bracket. We compare our solutions with the previously constructed

BPS string solitons in the ordinary description of M5-brane in constant three-form flux via

the Seiberg-Witten map [2, 17], and find nice agreement.

2 String solitons in the M5-brane worldvolume with a Nambu-Poisson

structure

2.1 Supersymmetry transformation in the M5-brane action

In this subsection we review the supersymmetry transformation in the M5-brane worldvol-

ume action with a Nambu-Poisson structure constructed in ref. [1, 2] to fix our notation

and prepare for the study of BPS equations in the subsequent subsections. The detail

of the construction of the M5-brane action can be found in ref. [2]. We will follow the

notation of ref. [2] except that we omit “ ’ ” from the six dimensional variables and some

obvious modifications in the numbering of coordinates. In this model the supersymmetry

transformation of the fermionic field Ψ is given as follows:

δΨ = DµXiΓµΓiǫ + Dµ̇XiΓµ̇Γiǫ

−1

2
Hµν̇ρ̇Γ

µΓν̇ρ̇ǫ −H345Γ345ǫ

−g2

2
{X µ̇,Xi,Xj}Γµ̇Γijǫ +

g2

6
{Xi,Xj ,Xk}ΓijkΓ345ǫ, (2.1)

where fields live on the six dimensional M5-brane worldvolume parametrized by xµ (µ =

0, 1, 2) and yµ̇ (µ̇ = 3, 4, 5). Xi’s (i = 6, · · · , 10) are scalar fields which describe embedding

of the M5-brane in the transverse space. Γ’s are eleven dimensional Gamma matrices. The

metric on the M5-brane is mostly plus, diag(−1, 1, 1, · · · , 1). The fermionic shift symmetry

has already been taken into account so that the configuration that all the fields vanish is

invariant under the supersymmetry (see section 6 of ref. [2] for more detail). The chirality

of the fermion and supersymmetry parameters are chosen as follows:

Γ012345Ψ = −Ψ, Γ012345ǫ = ǫ. (2.2)

{∗, ∗, ∗} denotes the Nambu-Poisson bracket which we choose to be the one on R
3:

{f, g, h} = ǫµ̇ν̇ρ̇ ∂f

∂yµ̇

∂g

∂yν̇

∂h

∂yρ̇
, (2.3)

where ǫµ̇ν̇ρ̇ is a totally anti-symmetric tensor on R
3 with ǫ345 = 1. X µ̇ is given by

X µ̇ =
yµ̇

g
+ bµ̇, bµ̇ =

1

2
ǫµ̇ν̇ρ̇bν̇ρ̇. (2.4)

The covariant derivatives in the directions µ = 0, 1, 2 are given as

Dµϕ ≡ Dµϕ = ∂µϕ − g{bµν̇ , yν̇ , ϕ}, (2.5)

– 2 –
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and those in the directions µ̇ = 3, 4, 5 are given by

Dµ̇ϕ ≡ g2

2
ǫµ̇ν̇ρ̇{X ν̇ ,X ρ̇, ϕ}

= ∂µ̇ϕ + g(∂λ̇bλ̇∂µ̇ϕ − ∂µ̇bλ̇∂λ̇ϕ) +
g2

2
ǫµ̇ν̇ρ̇{bν̇ , bρ̇, ϕ}. (2.6)

Here, ϕ collectively represents “covariant” fields Xi and Ψ. The field strength of the

anti-symmetric tensor field is given by

Hλµ̇ν̇ = ǫµ̇ν̇λ̇DλX λ̇

= Hλµ̇ν̇ − gǫσ̇τ̇ ρ̇(∂σ̇bλτ̇ )∂ρ̇bµ̇ν̇ , (2.7)

H345 = g2{X3,X4,X5} − 1

g
=

1

g
(V − 1)

= H345 +
g

2
(∂µ̇bµ̇∂ν̇bν̇ − ∂µ̇bν̇∂ν̇bµ̇) + g2{b3, b4, b5}, (2.8)

where V is the “induced volume”

V = g3{X3,X4,X5}, (2.9)

and H is the linear part of the field strength

Hλµ̇ν̇ = ∂λbµ̇ν̇ − ∂µ̇bλν̇ + ∂ν̇bλµ̇, (2.10)

Hλ̇µ̇ν̇ = ∂λ̇bµ̇ν̇ + ∂µ̇bν̇λ̇ + ∂ν̇bλ̇µ̇. (2.11)

2.2 BPS equations for string-like configurations

The type of brane configurations we will study is as follows:

0 1 2 3 4 5 6 7 8 9 10

M5 © © © © © © − − − − −
M2 soliton © © − − − − © − − − −

where © denotes the direction the brane extends and − denotes the direction the brane

localizes. The M2-brane ending on the M5-brane appears as a string in the M5-brane world-

volume extending in the 1-st direction. Note that the Nambu-Poisson structure is in the

345 directions. We will study the configurations which preserve half of the supersymmetry

parametrized by

Γ016ǫ = ∓ǫ. (2.12)

From eq. (2.1) we observe that the supersymmetry transformation parametrized by above

ǫ is preserved when the following BPS equations are satisfied:

Dµ̂X6 ± 1

6
ǫµ̂

ν̂ρ̂σ̂Hν̂ρ̂σ̂ = 0, (2.13)

and other fields set to zero, where µ̂, ν̂ = 2, · · · , 5. ǫµ̂ν̂ρ̂σ̂ is a totally anti-symmetric tensor

with ǫ2345 = 1.

– 3 –
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2.3 BPS equations and solutions at order g0

We construct the solutions to the BPS equations (2.13) by expansions in g:

X6 ≡ Φ = Φ(0) + gΦ(1) + g2Φ(2) + O(g3),

bµν̇ = bµν̇(0) + gbµν̇(1) + g2bµν̇(2) + O(g3),

bµ̇ν̇ = bµ̇ν̇(0) + gbµ̇ν̇(1) + g2bµ̇ν̇(2) + O(g3). (2.14)

At order g0, the BPS equation (2.13) becomes

∂µ̂Φ(0) ±
1

6
ǫµ̂

ν̂ρ̂σ̂Hν̂ρ̂σ̂(0) = 0. (2.15)

From the condition that H(0) can be written as H(0) = db(0) in an open patch, i.e. from

the condition dH(0) = 0, we obtain the condition

�Φ(0) = 0, (2.16)

where � ≡ δµ̂ν̂∂µ̂∂ν̂ . We consider delta-function source at the origin, like in the case of

Dirac monopole, and eq. (2.16) is not satisfied globally. Thus we have

Φ(0) =
m

r2
, (2.17)

where r2 =
∑5

µ̂=2(xµ̂)2 and

m =
k

(2π)3/2
√

T6
, (2.18)

where the integer k is a topological charge of the solution, and T6 is the tension of the

M5-brane with the Nambu-Poisson structure.3 Corresponding tensor field configurations

are given by

bµ̇
(0) = ∓mxµ̇

a3
A, (2.19)

where

A = ±π

2
+ tan−1

(x2

a

)

+
ax2

r2
, (2.20)

with

a2 = x2
3 + x2

4 + x2
5. (2.21)

The solution for the tensor field has been studied in ref. [25]. Note that we have chosen

the gauge b23 = b24 = b25 = 0 which simplifies our analysis. The choice of ± in (2.20)

corresponds to the choice of the direction of the Dirac string. At order g0 the Dirac string

is not physical. The g expansion is not a good expansion for studying the fate of the Dirac

string, since g is associated with the Nambu-Poisson bracket which has three derivatives,

3We follow the notation of ref. [2]. See section 7 of the reference for the Dirac quantization condition.
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yµ̇ Xi (Φ ≡ X6) bµν̇ , bµ̇ν̇ g T6

mass dimension −1 −1 −1 0 6

Table 1. Mass dimension of the relevant fields and parameters.

and it follows that it is actually the expansion in g/(
√

T6 a3). One can deduce it from

the mass dimension counting and the explicit form of the zero-th order solution. Table 1

summarizes the mass dimension of the relevant fields and parameters in our convention

for readers’ convenience. Such expansion is not appropriate for a3 . (g/
√

T6). Therefore,

in the rest of the paper we are satisfied with that the Dirac string is a gauge artifact at

order g0 and do not worry too much about the Dirac string. In the case of monopoles

in non-commutative space, it has been shown that the Dirac string becomes physical and

smooth due to the effect non-perturbative in the non-commutative parameter [26].

2.4 BPS equations and solutions at order g

Now we move on to the order g solutions. We should solve

0 = ∂2Φ(1) ±
(

H345(1) +
1

2
(∂µ̇bµ̇

(0)∂ν̇b
ν̇
(0) − ∂µ̇bν̇

(0)∂ν̇bµ̇
(0))

)

, (2.22)

0 = ∂λ̇Φ(1) + (∂µ̇bµ̇
(0)∂λ̇Φ(0) − ∂λ̇bν̇

(0)∂ν̇Φ(0)) ±
1

2
ǫλ̇

2µ̇ν̇H2µ̇ν̇(1). (2.23)

As in the previous subsection, we solve the condition dH(1) = 0. This condition reduces to

�Φ(1) = ±m2

(

16x2

r8
+

32A

ar6

)

. (2.24)

We found

Φ(1) = ±m2

(

2x2

r6
+

2A

ar4

)

, (2.25)

solves eq. (2.24) while it does not modify the boundary conditions on Φ at r → ∞. Note

that Φ is not gauge invariant. (See ref. [2] for gauge transformation laws in the M5-brane

worldvolume action with the Nambu-Poisson structure.)

2.5 Seiberg-Witten map

Seiberg-Witten map was first found as a map between non-commutative description and

commutative description of D-branes in a constant B-field background [17]. In ref. [2] it

was generalized to a map between description by the M5-brane with the Nambu-Poisson

structure and description by the ordinary M5-brane in a constant three-form background.

As a first step, we study the Seiberg-Witten map for the scalar field. Only in this subsection,

we denote the scalar field in the Nambu-Poisson description as Φ̂, and the corresponding

field in the ordinary description as Φ.

– 5 –
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BPS string solitons in M5-brane in constant three-form flux have been constructed in

ref. [19, 20]. The scalar configuration Φ̌ is given by

Φ̌ =
m

ř2
± tan θ x̌2, (2.26)

where θ is related to the background three-form field as H
(bg)
345 = − tan θ.4 Here x̌µ̇ = xµ̇

(µ̇ = 3, 4, 5), but for x̌2 we need to make a rotation in the coordinate and the field before

applying the Seiberg-Witten map [27–30]:

(

Φ

x2

)

=

(

cos φ − sin φ

sin φ cos φ

)(

Φ̌

x̌2

)

, (2.27)

where we choose φ so that the term linear in x2 does not appear in Φ. For |θ| ≪ 1,

φ = ±θ + O(θ2).

The Seiberg-Witten map for the scalar field is given in ref. [2] up to order g:

Φ̂ = Φ + gbµ̇∂µ̇Φ + O(g). (2.28)

Up to the first order in g and θ, we obtain

Φ̂ =
m

r2
± 2m2

(

θx2

r6
+

gA

ar4

)

+ (higher order terms in g and θ). (2.29)

This coincides with our solution (2.25) if

g = θ + O(θ2). (2.30)

Eq. (2.30) is consistent with the result of ref. [2].

3 Summary and future directions

In this paper we obtained solutions of the BPS equations for string-like configurations

derived from the M5-brane worldvolume action with the Nambu-Poisson structure con-

structed in ref. [1, 2] up to the first order in g. After the Seiberg-Witten map our solutions

agreed with the BPS string solitons in the ordinary description of M5-brane. This result

motivates more thorough study of Seiberg-Witten map between the M5-brane worldvolume

action with the Nambu-Poisson structure and the ordinary M5-brane worldvolume action

in constant three-form flux. In the case of D-branes in a constant B-field background, it has

been argued (and explicitly checked for the first few terms in the expansion in the slowly

varying field strength F of the ordinary gauge field) that the non-commutative F̂ 2 action

coincides with the ordinary DBI action in the zero slope limit, up to total derivative terms

and an additive constant [17]. The M5-brane action with the Nambu-Poisson structure,

with the H2 term in it being in parallel with the F̂ 2 term above, may similarly coincide with

4The solution looks like the one for linearized M5-brane action, but actually it solves the equation of

motion of the non-linear M5-brane action in the ordinary description [19, 20]. Our convention differs from

that in ref. [19, 20] by a factor of 1

4
.

– 6 –
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the ordinary (DBI-type) M5-brane action in an appropriate limit of the M2-brane tension

and the background three-form flux. But this needs to be checked by further investiga-

tion.5 To achieve this goal, we first need to understand how to take the appropriate limit.

This might not be as simple as in the case of D-branes in a constant B-field background

which can be studied using the open string worldsheet free CFT, due to the interacting

nature of the membrane worldvolume theory (see ref. [21, 22] for earlier studies). But the

investigation through the relation between M-theory and type IIA string theory along the

line of ref. [2] may be of help to understand this issue. We also need to understand how

to connect the apparently different treatments of the self-dual two-form between the two

descriptions of the M5-brane in constant three-form flux.6

Our analysis was restricted to the expansion in the parameter g. Such expansion is not

suitable for studying the structure near the Dirac string. In the case of solitons/instantons

in non-commutative space, techniques to obtain exact solutions have been developed by

expressing functions on non-commutative space with operators acting on the Hilbert space

of harmonic oscillators [26, 34–44]. In these cases solutions are smooth due to the ef-

fect non-perturbative in the non-commutative parameter. To construct solutions on the

M5-brane with the Nambu-Poisson structure in a similar way, we would first need to un-

derstand what is the appropriate “quantization” of the Nambu-Poisson bracket. For this

purpose, investigations in ref. [23, 45] seem very suggestive. It will be very interesting to

study solitons on manifolds with a quantum Nambu-Poisson structure from the M-theory

point of view.
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